New mechanism of generation of large-scale magnetic field in a sheared turbulent plasma
نویسنده
چکیده
A review of recent studies on a new mechanism of generation of large-scale magnetic field in a sheared turbulent plasma is presented. This mechanism is associated with the shear-current effect which is related to the W×J-term in the mean electromotive force. This effect causes the generation of the large-scale magnetic field even in a nonrotating and nonhelical homogeneous sheared turbulent convection whereby the α effect vanishes (where W is the mean vorticity due to the large-scale shear motions and J is the mean electric current). It is found that turbulent convection promotes the shear-current dynamo instability, i.e., the heat flux causes positive contribution to the shear-current effect. However, there is no dynamo action due to the shear-current effect for small hydrodynamic and magnetic Reynolds numbers even in a turbulent convection, if the spatial scaling for the turbulent correlation time is τ(k) ∝ k, where k is the small-scale wave number. We discuss here also the nonlinear mean-field dynamo due to the shear-current effect and take into account the transport of magnetic helicity as a dynamical nonlinearity. The magnetic helicity flux strongly affects the magnetic field dynamics in the nonlinear stage of the dynamo action. When the magnetic helicity flux is not small, the saturated level of the mean magnetic field is of the order of the equipartition field determined by the turbulent kinetic energy. The obtained results are important for elucidation of origin of the large-scale magnetic fields in astrophysical and cosmic sheared turbulent plasma.
منابع مشابه
Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملGeneration of the magnetic field in jets
We consider dynamo action under the combined influence of turbulence and large-scale shear in sheared jets. Shear can stretch turbulent magnetic field lines in such a way that even turbulent motions showing mirror symmetry become suitable for generation of a large-scale magnetic field. We derive the integral induction equation governing the behaviour of the mean field in jets. The main result i...
متن کاملGeneration of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.
We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require...
متن کاملNew mechanism of generation of large-scale magnetic fields in merging protogalactic and protostellar clouds
A new mechanism of generation of large-scale magnetic fields in colliding protogalactic clouds and merging protostellar clouds is discussed. Interaction of the colliding clouds produces large-scale shear motions which are superimposed on small-scale turbulence. Generation of the large-scale magnetic field is due to a ”shear-current” effect (or ”vorticity-current” effect), and the mean vorticity...
متن کاملLarge-scale magnetic field generation by α-effect driven by collective neutrino-plasma interaction
We suggest a new mechanism for generation of large-scale magnetic field in the hot plasma of early universe which is based on the parity violation in weak interactions and depends neither on helicity of matter turbulence resulting in the standard α-effect nor on general rotation. The mechanism can result in a self-excitation of an (almost) uniform cosmological magnetic field. The large-scale ma...
متن کامل